Projected Gradient Methods for Nonnegative Matrix Factorization
نویسندگان
چکیده
منابع مشابه
Projected Gradient Methods for Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) can be formulated as a minimization problem with bound constraints. Although bound-constrained optimization has been studied extensively in both theory and practice, so far no study has formally applied its techniques to NMF. In this letter, we propose two projected gradient methods for NMF, both of which exhibit strong optimization properties. We discuss ...
متن کاملMultilayer Nonnegative Matrix Factorization Using Projected Gradient Approaches
The most popular algorithms for Nonnegative Matrix Factorization (NMF) belong to a class of multiplicative Lee-Seung algorithms which have usually relative low complexity but are characterized by slow-convergence and the risk of getting stuck to in local minima. In this paper, we present and compare the performance of additive algorithms based on three different variations of a projected gradie...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملFast Nonnegative Matrix Factorization Algorithms Using Projected Gradient Approaches for Large-Scale Problems
Recently, a considerable growth of interest in projected gradient (PG) methods has been observed due to their high efficiency in solving large-scale convex minimization problems subject to linear constraints. Since the minimization problems underlying nonnegative matrix factorization (NMF) of large matrices well matches this class of minimization problems, we investigate and test some recent PG...
متن کاملDescent methods for Nonnegative Matrix Factorization
In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these different methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2007
ISSN: 0899-7667,1530-888X
DOI: 10.1162/neco.2007.19.10.2756